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Abstract

Galilei-invariant equations for massless fields are obtained via contractions of
relativistic wave equations. It is shown that the collection of non-equivalent
Galilei-invariant wave equations for massless fields with spin equal to 1 and 0
is very rich and corresponds to various contractions of the representations of
the Lorentz group to those of the Galilei ones. It describes many physically
consistent systems, e.g., those of electromagnetic fields in various media or
Galilean Chern–Simons models. Finally, classification of all linear and a big
group of nonlinear Galilei-invariant equations for massless fields is presented.

PACS numbers: 03.50.de, 41.20.−q

1. Introduction

It has already been observed by Le Bellac and Lévy-Leblond [1] in 1973 that a non-relativistic
limit of the Maxwell equations is not unique. According to them [1, p 218], the term ‘non-
relativistic’ means ‘in agreement with the principle of Galilei relativity’. Moreover, they
claimed that there exist two Galilei invariant theories of electromagnetism which can be
obtained by appropriate limiting procedures starting with the Maxwell theory.

The words ‘Galilean electromagnetism’ themselves, introduced in [1], looked rather
strange since it is pretty well known that electromagnetic phenomena are in perfect accordance
with the Einstein relativity principle. On the other hand, physicists are always interested in
whether non-relativistic approximations are adequate, which makes the results of the paper
[1] quite popular. The importance of such results are emphasized by the fact that a correct
definition of a non-relativistic limit is by no means a simple problem, in general, and in the
case of massless fields in particular (see, for example, [2]).

Analyzing the contents of the main impact journals in theoretical and mathematical
physics, one finds that Galilean aspects of electrodynamics are evergreen subjects.
Various approaches to the Galilei-invariant theories were discussed briefly in [3]. Galilei
electromagnetism was discussed in papers [4–6] by using the reduction approach in which
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the Maxwell equations were generalized into a (1+4)-dimensional Minkowski space and then
reduced to the Galilei-invariant equations. Such reduction is based on the fact that the Galilei
group is a subgroup of the generalized Poincaré group (i.e., of the group of motions of the flat
(1+4)-dimensional Minkowski space). For reduction of representations of the group P(1, 4)

to those of the Galilei group see [7, 8].
In spite of that, Galilei electromagnetism contains constantly many unsolved problems,

for example, the question of a complete description of all Galilean theories for vector and
scalar massless fields. In fact, the solution of this problem is the main issue of the present
paper.

In paper [3], the indecomposable representations of the homogeneous Galilei group
HG(1, 3) were derived, namely, all those which when restricted to representations of the
rotation subgroup of the group HG(1, 3), are decomposed to the spins 0 and 1 representations.
Moreover, their connection with representations of the Lorentz group via the Inönü–Wigner
contractions [9] were studied in [3, 10]. These results allow us to complete the classification
of the wave equations describing both massive and massless fields.

In the present paper, we use our knowledge of indecomposable representations of the
homogeneous Galilei algebra hg(1, 3) from [3, 10] to derive the Galilei invariant equations
for vector and scalar massless fields. We shall show that, in contrast to the corresponding
relativistic equations for which there are only two possibilities, namely, the Maxwell equations
and the equations for the longitudinal massless field, the number of possible Galilei equations
is huge. The principal description of such equations for vector and scalar fields is presented
in the appendix where a complete list of relative differential invariants is presented. Among
them there are equations for fields with more or less components than in the Maxwell equations.

These results can be clearly interpreted via representation and contraction theories. As
was proved in the papers [3, 10], there is a large variety of possible contractions of diverse
representations of the Lorentz group to those of the Galilei one and, consequently, many
non-equivalent Galilei massless fields. In the following sections, we use these results from
[3, 10] to describe connections of the relativistic and Galilei theories for massless fields. These
connections appear to be rather non-trivial: some completely decoupled relativistic systems
can be contracted to coupled Galilei ones.

We pay special attention to nonlinear Galilean systems for massless fields. In particular,
Galilei-invariant Born–Infeld and Chern–Simons systems are deduced. A Galilei-invariant
Lagrangian in (1+3)- dimensional space which includes a Chern–Simons term bilinear in field
components is discussed. It is shown that, like in the initial Chern–Simons model [18], the
Galilean Chern–Simons term does not affect the energy–momenta tensor.

In sections 2 and 3, we present some results of paper [3] concerning the classification
of indecomposable representations of the homogeneous Galilei group and the contractions of
related representations of the Lorentz group. These results are used in section 4 to classify all
non-equivalent Galilei-invariant equations of first order for vector and scalar massless fields.
In section 5, nonlinear Galilei-invariant equations are derived including Galilean Born–Infeld
and Chern–Simons systems. Finally, the results of classification are summarized and discussed
in section 6.

2. Indecomposable representations of the homogeneous Galilei group

The Galilei group G(1, 3) consists of the following transformations of temporal and spatial
variables:

t → t ′ = t + a,

x → x′ = Rx + vt + b,
(1)
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where a, b and v are real parameters of time translation, space translations and pure Galilei
transformations respectively and R is a rotation matrix.

The homogeneous Galilei group HG(1, 3) is a subgroup of the group G(1, 3) leaving
invariant the point x = (0, 0, 0) at time t = 0. It is formed by space rotations and pure Galilei
transformations, i.e., by transformations (1) with a = 0 and b = 0.

The Lie algebra hg(1, 3) of the homogeneous Galilei group includes six basis elements,
namely, three generators Sa, a = 1, 2, 3 of the rotation subgroup and three generators ηa of
the Galilei boosts. These basis elements satisfy the following commutation relations:

[Sa, Sb] = iεabcSc,

[ηa, Sb] = iεabcηc and [ηa, ηb] = 0.
(2)

All indecomposable representations3 of HG(1, 3) which, when restricted to the rotation
subgroup, are decomposed to direct sums of vector and scalar representations, were found in
[3]. These representations (denoted as D(m, n, λ)) are labeled by triplets of numbers: n,m

and λ. These numbers take the values

−1 � (n − m) � 2, n � 3, λ =

⎧⎪⎨
⎪⎩

0 if m = 0,

1 if m = 2 or n − m = 2,

0, 1 if m = 1, n �= 3.

(3)

In accordance with (3), there exist ten non-equivalent indecomposable representations
D(m, n, λ). Their carrier spaces can include three types of rotational scalars A,B,C and five
types of vectors R, U, W, K, N whose transformation laws with respect to the Galilei boost
are [10]

A → A′ = A,

B → B ′ = B + v · R,

C → C ′ = C + v · U + 1
2 v2A,

R → R′ = R,

U → U′ = U + vA,

W → W′ = W + v × R,

K → K′ = K + v × R + vA,

N → N′ = N + v × W + vB + v(v · R) − 1
2 v2R,

(4)

where v is a vector whose components are parameters of the Galilei boost, v · R and v × R are
scalar and vector products of vectors v and R respectively.

Carrier spaces of these indecomposable representations of the group HG(1, 3) include
such sets of scalars A,B,C and vectors R, U, W, K, N which transform among themselves
w.r.t. transformations (4) but cannot be split into a direct sum of invariant subspaces. There

3 Let us remind that a representation of a group G in a normalized vector space C is irreducible if its carrier space
C does not include subspaces invariant w.r.t. G. The representation is called indecomposable if C does not include
invariant subspaces CI which are orthogonal to C\CI . Irreducible representations are indecomposable too but
indecomposable representations can be reducible in the sense that their carrier spaces can include (non-orthogonal)
invariant subspaces.

3
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exist exactly ten such sets which are listed in the following equation:

{A} ⇐⇒ D(0, 1, 0),

{R} ⇐⇒ D(1, 0, 0),

{B, R} ⇐⇒ D(1, 1, 0),

{A, U} ⇐⇒ D(1, 1, 1),

{A, U, C} ⇐⇒ D(1, 2, 1),

{W, R} ⇐⇒ D(2, 0, 0),

{R, W, B} ⇐⇒ D(2, 1, 0),

{A, K, R} ⇐⇒ D(2, 1, 1),

{A,B, K, R} ⇐⇒ D(2, 2, 1),

{B, N, W, R} ⇐⇒ D(3, 1, 1).

(5)

Thus, in contrast to the relativistic case, where there are only three Lorentz covariant
quantities which transform as vectors or scalars under rotations (i.e., a relativistic 4-vector,
antisymmetric tensor of the second order and a scalar), there are ten indecomposable sets of
the Galilei vectors and scalars which we have enumerated in equation (5).

3. Contractions of representations of the Lorentz algebra

It is well known that the Galilei algebra can be obtained from the Poincaré one by a limiting
procedure called ‘the Inönü–Wigner contraction’ [9]. Representations of these algebras can
also be connected by this kind of contraction. However, this connection is more complicated
for two reasons. First, contraction of a non-trivial representation of the Lorentz algebra yields
to the representation of the homogeneous Galilei algebra in which generators of the Galilei
boosts are represented trivially, so that to obtain a non-trivial representation it is necessary to
apply in addition a similarity transformation which depends on a contraction parameter in a
tricky way. Second, to obtain indecomposable representations of hg(1, 3), it is necessary, in
general, to start with completely reducible representations of the Lie algebra of the Lorentz
group.

In paper [3], representations of the Lorentz group which can be contracted to
representations D(m, n, λ) of the Galilei group were found and the related contractions
specified. Here, we present only a part of the results from [3] which will be used in what
follows.

Let us begin with the representation D
(

1
2 , 1

2

)
of the Lie algebra so(1, 3) of the Lorentz

group, whose carrier space is formed by 4-vectors. Basis of this representation is given by
4 × 4 matrices of the following form:

Sab = εabc

(
sc 03×1

01×3 0

)
, S0a =

(
03×3 −k

†
a

ka 0

)
. (6)

Here, sa are matrices of spin 1 with the elements (sa)bc = iεabc and ka are 1 × 3 matrices of
the form

k1 = (i, 0, 0), k2 = (0, i, 0), k3 = (0, 0, i). (7)

The Inönü–Wigner contraction consists of the transformation to a new basis

Sab → Sab, S0a → εS0a

4
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followed by a similarity transformation of all basis elements Sμν → S ′
μν = V SμνV

−1 with a
matrix V depending on a contraction parameter ε. Moreover, V depends on ε in such a way
that all transformed generators S ′

ab and εS ′
0a are kept non-trivial and non-singular when ε → 0

[9].
There exist two matrices V for representation (6), namely,

V1 =
(

εI3×3 03×1

01×3 1

)
and V2 =

(
I3×3 03×1

01×3 ε

)
. (8)

Using V1 we obtain

S ′
ab = V1SabV

−1
1 = Sab, S ′

0a = εV1S0aV
−1

1 =
(

03×3 −ε2k
†
a

ka 0

)
. (9)

Then, passing ε to zero, we come to the following matrices:

Sa = 1

2
εabcSbc =

(
sa 03×1

01×3 0

)
, ηa = lim S ′

0a|ε→0 =
(

03×3 03×1

ka 0

)
. (10)

Analogously, using matrix V2 we obtain

Sa =
(

sa 03×1

01×3 0

)
, ηa =

(
03×3 −k

†
a

01×3 0

)
. (11)

Matrices (10) and (11) satisfy commutation relations (2), i.e., they realize representations
of the algebra hg(1, 3). More precisely, they form generators of the indecomposable
representations D(1, 1, 0) and D(1, 1, 1) of the homogeneous Galilei group respectively.
Indeed, denoting vectors from the related representation spaces as

� =

⎛
⎜⎜⎝

R1

R2

R3

B

⎞
⎟⎟⎠ for D(1, 1, 0) and �̃ =

⎛
⎜⎜⎝

U1

U2

U3

A

⎞
⎟⎟⎠ for D(1, 1, 1)

and using the transformation laws (4) for A,B, R = column(R1, R2, R3) and U =
column(U1, U2, U3) we easily find the corresponding Galilei boost generators ηa in the forms
(10) and (11). As far as rotation generators Sa are concerned, they are direct sums of matrices
of spin 1 (which are responsible for transformations of 3-vectors R and U) and zero matrices
(which keep scalars A and B invariant).

To obtain the five-dimensional representation D(1, 2, 1), we have to start with a direct
sum of the representations D

(
1
2 , 1

2

)
and D(0, 0) of the Lorentz group. The corresponding

generators of the algebra so(1, 3) have the form

Ŝμν =
(

Sμν ·
· 0

)
, (12)

where Sμν are matrices (6) and the dots denote zero matrices of appropriate dimensions. The
matrix of the corresponding similarity transformation can be written as

V3 =
⎛
⎝I3×3 03×1 03×1

01×3 − 1
2ε 1

2ε

01×3 ε−1 ε−1

⎞
⎠ , V −1

3 =
⎛
⎝I3×3 03×1 03×1

01×3 −ε−1 1
2ε

01×3 ε−1 1
2ε

⎞
⎠ . (13)

As a result, we obtain the following basis elements of the representation D(1, 2, 1) of the
algebra hg(1, 3):

Sa =
⎛
⎝ sa 01×3 01×3

03×1 0 0
03×1 0 0

⎞
⎠ , ηa =

⎛
⎝03×3 k

†
a 03×1

01×3 0 0
ka 0 0

⎞
⎠ . (14)

5
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Matrices ηa in (14) generate transformations (4) of the components of vector-function
�̂ = column(U, A,C) so that the relation

�̂ → �̂ ′ = exp(iη · v)�̂

written componentwise, presents the transformation properties for U, A and C written in (4).
Considering the representation D(1, 0) ⊕ D(0, 1) of the Lorentz group whose generators

are 6 × 6 matrices

Sab = εabc

(
sc 03×3

03×3 sc

)
and S0a =

(
03×3 −sa

sa 03×3

)
, (15)

we have shown in [3] that it can be contracted only to one indecomposable representation of
the HG(1, 3), namely, to the representation D(2, 0, 0). The corresponding contraction matrix
can be chosen in the following form [3]:

V4 =
(

εI3×3 03×3

03×3 I3×3

)
. (16)

In the present paper, we shall use also another contraction matrix:

V5 =
(

I3×3 03×3

03×3 εI3×3

)
. (17)

Matrices V4 and V5 are unitary equivalent but can lead to different results when applied to
search for Galilei limits of relativistic equations whose solutions form a carrier space of the
representation D(1, 0) ⊕ D(0, 1) but also include additional dependent variables. It happens,
e.g., when one considers Galilei limits of the Maxwell equations with currents and charges.

4. Galilei massless fields

For constructions of Galilei massless equations it is possible to use the same approach as in
[11] where equations for the massive fields have been derived. However, here we prefer to
apply another technique which consists in contractions of the appropriate relativistic wave
equations.

4.1. Galilei limits of the Maxwell equations

According to the Lévy-Leblond and Le Bellac analysis from 1967 [1, 12] (see also [13, 14])
there are two Galilean limits of the Maxwell equations.

In the so-called ‘magnetic’ Galilean limit, we receive pre-Maxwellian electromagnetism.
The corresponding equations for the magnetic field H and electric field E read

∇ × Em − ∂Hm

∂t
= 0, ∇ · Em = ej 0

m,

∇ × Hm = ejm, ∇ · Hm = 0,

(18)

where j = (
j 0
m, jm

)
is an electric current and e denotes an electric charge.

Equations (18) are invariant with respect to the Galilei transformations (1) provided
vectors Hm, Em and electric current j co-transform as

Hm → Hm, Em → Em − v × Hm,

jm → jm, j 0
m → j 0

m + v · jm.
(19)

Introducing a Galilean vector-potential Am = (A0, A) such that

Hm = ∇ × A, Em = ∂A

∂t
− ∇A0 (20)

6
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we obtain from (19) the following transformation laws for A:

A0 → A0 + v · A, A → A. (21)

The other Galilean limit of the Maxwell equations, i.e., the ‘electric’ one looks as

∇ × He +
∂Ee

∂t
= eje, ∇ · Ee = ej 4

e ,

∇ × Ee = 0, ∇ · He = 0,

(22)

with the Galilean transformation laws of the following form:

He → He + v × Ee, Ee → Ee,

je → je + vj 4
e , j 4

e → j 4
e .

(23)

In contrast to j 0
m in equation (19), the scalar component of current j 4

e is not changed under
the Galilei boost. In (22), (23) and in the following text, we use the upper index 4 to mark
such vector components which are rotational and Galilean scalars, while the upper index 0 is
reserved for components which are rotational scalars but are changed under the Galilei boost.

Vectors He and Ee can be expressed via vector potentials as

He = ∇ × A, Ee = −∇A4, (24)

with the corresponding Galilei transformations for the vector-potential

A4 → A4, A → A + vA4. (25)

The Galilean limits of the Maxwell equations (found in [1, 12]) admit clear interpretation in the
representation theory. The thing is that there are exactly two non-equivalent representations of
the homogeneous Galilei group the carrier spaces of which are 4-vectors—the representations
D(1, 1, 0) and D(1, 1, 1). In other words, there are exactly two non-equivalent Galilean
transformation laws for 4-vector potentials and currents, which are given explicitly in
equations (19), (21) and (23), (25), respectively. Equations for massless fields invariant
with respect to these transformations are written in (18) and (22).

Let us note that both representations, i.e., D(1, 1, 0) and D(1, 1, 1), can be obtained via
contractions of the representation D(1/2, 1/2) of the Lorentz group whose carrier space is
formed by relativistic 4-vectors. The related contraction matrices are written explicitly in (8).
Each of these contractions generates a Galilei limit of the Maxwell equations either in the form
(18) or (22). In sections 4.3 and 4.4, we shall obtain equations (18) and (22) via contraction
of a more general system of relativistic equations for massless fields.

4.2. Extended Galilei electromagnetism

In accordance with our analysis of vector field representations of the Galilei group there exists
only one representation, namely, D(1, 2, 1) whose carrier space is formed by 5-vectors. Such
5-vectors appear naturally in many Galilean models, especially in those which are constructed
via reduction technique [3], i.e., starting with models invariant with respect to the extended
Poincaré group P(1, 4) and then reducing them to be invariant w.r.t. its Galilei subgroup.

As mentioned in our paper [3], there are possibilities of introducing such different five-
component gauge fields which join and extend the magnetic and electric Galilei limits of the
considered relativistic 4-vector potentials. However, physical meanings of the corresponding
theories have not been clarified. Moreover, as we have seen, the Maxwell electrodynamics
can be contracted either to magnetic limit (18) or to the electric limit (22), and it has been
generally accepted to think that it is impossible to formulate a consistent theory which includes
both ‘electric’ and ‘magnetic’ Galilean gauge fields, (see, e.g., [5]).

7
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Accepting the correctness of this statement, we shall nevertheless show that in some sense
it is possible to join the ‘electric’ and ‘magnetic’ Galilei gauge fields, since the Galilean 5-
vector potential appears naturally via contraction of a relativistic theory. Rather surprisingly,
the corresponding relativistic equations are decoupled to two non-interacting subsystems,
whereas their contracted counterparts appear to be coupled. This is in accordance with the
observation presented in [3] that some indecomposable representations of the homogeneous
Galilei group appear via contractions of completely reducible representations of the Lorentz
group.

Let us begin with relativistic equations for vector-potential Aν :

pμpμAν = −ejν (26)

in the Lorentz gauge, i.e., fulfilling

pμAμ = 0 or p0A
0 = p · A. (27)

In equations (26) and (27), pμ = i ∂
∂xμ , indices μ, ν run over the values μ, ν = 0, 1, 2, 3, A

and p are vector whose components are A1, A2, A3 and p1, p2, p3 correspondingly.
Let us consider in addition the inhomogeneous d’Alembert equation for a relativistic

scalar field denoted as A4:

pμpμA4 = −ej 4. (28)

Introducing the related vectors of the field strengths in the standard form

H = ∇ × A, E = ∂A

∂x0
− ∇A0, F = −∇A4, F 0 = ∂A4

∂x0
, (29)

we get the Maxwell equations for E and H:

∇ × E − ∂H

∂x0
= 0, ∇ · H = 0,

∇ × H +
∂E

∂x0
= ej, ∇ · E = ej 0

(30)

and the following equations for F and F 0:

∂F 0

∂x0
− ∇ · F = ej 4,

∇ × F = 0,
∂F

∂x0
= ∇F 0.

(31)

Clearly, the system of equations (30) and (31) is completely decoupled. Its Galilean counterpart
obtained using the Inönü–Wigner contraction appears to be, rather surprisingly, coupled. This
contraction can be made directly for equations (30) and (31) but we prefer another, a more
simple way with potential equations (26).

The system of equations (26)–(28) describes a decoupled system of relativistic equations
for the five-component function:

A = column(A1, A2, A3, A0, A4) = column(A, A0, A4). (32)

Moreover, the components (A1, A2, A3, A0) transform as a 4-vector and A4 transforms as a
scalar. The related generators (12) of the Lorentz group realize a direct sum of representations
of the algebra so(1, 3), namely D

(
1
2 , 1

2

) ⊕ D(0, 0).
In accordance with [3], the completely reduced representation of the Lie algebra of the

Lorentz group whose basis elements are given by equation (12) can be contracted either
to a direct sum of indecomposable representations of the Galilei algebra hg(1, 3) or to
indecomposable representation D(1, 2, 1) of this algebra.

8
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Let us consider the second possibility, i.e., a contraction to the indecomposable
representation. Such contraction is presented in equations (12)–(14).

Let us demonstrate now that this contraction reduces the decoupled relativistic systems
(26) and (28) to a system of the coupled equations invariant with respect to the Galilei group.
Indeed, denoting U3A = column(A′, A′0, A′4) and U3j = column(j′j ′0, j ′4) by A′ and j ′

respectively and taking into account that a non-relativistic variable t is associated with the
relativistic variable x0 by x0 = ct ∼ 1

ε
t , we come to the following system of equations for the

transformed quantities:

p2A′k = −ej ′k, i
∂A′4

∂t
= p · A′. (33)

Generators of the Galilei group for vectors A′ and j ′ are expressed in equation (14), so
under the Galilei transformations (1) they co-transform in accordance with the representation
D(1, 2, 1), i.e.,

A0 → A0 + v · A +
v2

2
A4, A → A + vA4, A4 → A4, (34)

and

j 4 → j 4, j → j + vj 4, j 0 → j 0 + v · j + 1
2v2j 4. (35)

Of course, transformations (1), (34) and (35) keep system (33) invariant. In accordance with
(33), the corresponding field strengths (compare with (29))

W = ∇ × A′, N = ∂A′

∂t
− ∇A′0, R = ∇A′4, B = ∂A′4

∂t
(36)

satisfy the following equations:

C ≡ ∇ · N − ∂

∂t
B − ej 0 = 0,

U ≡ ∂

∂t
R + ∇ × W − ej = 0,

A ≡ ∇ · R − ej 4 = 0,

N ≡ ∂

∂t
W + ∇ × N = 0,

W ≡ ∂

∂t
R − ∇B = 0,

R ≡ −∇ × R = 0, and

B ≡ ∇ · W = 0.

(37)

These equations are covariant with respect to the Galilei group like (33). Moreover, the
Galilei transformations for fields R, W, N , B and current j are given by equations (4) and
(35) correspondingly. In other words, these fields and current j form carrier spaces of the
representations D(3, 1, 1) and D(1, 2, 1) of the algebra hg(1, 3), respectively.

In contrast to a decoupled relativistic system of equations (30) and (31), its Galilei
counterpart (37) appears to be a coupled system of equations for vectors R, W, N and
scalar B.

The system of equations equivalent to (37) was derived in paper [4] via reduction of
generalized Maxwell equations invariant with respect to the extended Poincaré group P(1, 4)

with one time and four spatial variables. We have proved that this system is nothing else than
a contracted version of systems (30) and (31), including the ordinary Maxwell equations and
equations for a four gradients of the scalar potential. It other words, the system of the Galilei
invariant equations (37) admits a clear physical interpretation as a non-relativistic limit of the
system of familiar equations (30) and (31).

9
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4.3. Reduced Galilean electromagnetism

In contrast to the relativistic case, the Galilei invariant approach allows to reduce the number
of field variables. For example, considering the magnetic limit (18) of the Maxwell equations
it is possible to restrict ourselves to the case Hm = 0, since this condition is invariant with
respect to the Galilei transformations due to (19). Note that in a relativistic theory such
condition can be only imposed in a particular frame of reference and will be violated by the
Lorentz transformations.

In the mentioned sense, equations (37) are reducible too. They are defined on the most
extended multiplet of vector and spinor fields which is a carrier space of an indecomposable
representation of the homogeneous Galilei group. The corresponding representation D(3, 1, 1)

is indecomposable but reducible, i.e., it includes subspaces invariant w.r.t. the Galilei group.
This makes possible to reduce a number of dependent components of equations (37) without
violating its Galilei invariance.

In this section, we shall consider systematically all possible Galilei invariant constrains
which can be imposed on solutions of equations (37) and present the corresponding reduced
versions of the Galilean electromagnetism.

In accordance with (4) and (35), vector R and the fourth component j 4 of the current form
invariant subspaces w.r.t. the Galilei transformations. Thus we can impose the Galilei-invariant
conditions

R = 0 or ∇A4 = 0, j 4 = 0, (38)

and reduce system (37) to the following one:
∂

∂t
H̃ + ∇ × Ẽ = 0,

∇ × H̃ = ej, ∇ · H̃ = 0,

∇ · Ẽ = ∂

∂t
S + ej 0,

∇S = 0,

(39)

where we have used notations H̃ = W|R≡0, Ẽ = N|R≡0 and S = B|R≡0.

Vectors Ẽ, H̃ and scalar S belong to a carrier space of the representation D(2, 1, 1). Their
Galilei transformation laws are

Ẽ → Ẽ + v × H̃ + vS, H̃ → H̃, S → S. (40)

In accordance with (40), S belongs to an invariant subspace of the Galilei transformations,
so we can impose the following additional Galilei-invariant condition:

S = 0 or
∂A4

∂t
= 0. (41)

As a result, we come to equations (18), i.e., to the magnetic limit of Maxwell’s equations.
Thus equations (18) are nothing else than the system of equations (37) with the additional
Galilei-invariant constrains (38) and (41).

The Galilei transformations of solutions of equations (18) are given by formulae (19).
Again, we recognize an invariant subspace spanned on vectors Hm, and thus it is possible to
impose the invariant condition

Hm = 0 or A = ∇ϕ, jm = 0, (42)

where ϕ is a solution of the Laplace equation. As a result, we come to the following system:

∇ × Ê = 0, ∇ · Ê = eρ, (43)

where we have used notations Ê = Em|Hm≡0 and ρ = j 0
m

∣∣
Hm≡0.

10
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Equation (43) remains still Galilei-invariant, since both Ê and ρ are not changed under
the Galilei transformations. The corresponding potential Ã is constrained by conditions (38),
(41) and (42). Moreover, up to gauge transformations, it is possible to set A = 0 in (42).

4.4. Other reductions

Equations (39), (18) and (43) exhaust all Galilei-invariant systems which can be obtained
starting with (37) and imposing additional constraints which reduce the number of dependent
variables. To find the other Galilei-invariant equations for massless vector fields, we shall
use the observation that the Galilei transformations of equations (37) have the form written
in relations (4) if we replace here capital letters by calligraphic ones, i.e., N → N , W →
W , . . . , Thus, the following subsystem of equations (37) (obtained by excluding a self-
invariant pair of equations, namely, N = 0 and C = 0):

U ≡ ∇ × W +
∂

∂t
R − ej = 0,

A ≡ ∇ · R − ej 4 = 0,

W ≡ ∂

∂t
R − ∇B = 0,

−R ≡ ∇ × R = 0,

B ≡ ∇ · W = 0

(44)

is Galilei covariant too and does not include dependent variables N and j 0. The Galilei
transformations of W, R, B and j, j 4 remain determined by equations (4) and (35).

Following analogous reasonings, it is possible to exclude from (44) the equations U = 0
and B = 0 and to obtain the system

∇ · R − ej 4 = 0,

∂

∂t
R − ∇B = 0,

∇ × R = 0,

(45)

which includes only two vector and two scalar variables. The corresponding potential without
loss of generality reduces to the only variable A4.

The other possibility of reducing system (44) consists of excluding the equation W = 0.
As a result, we come to the electric limit for the Maxwell equations (22) for W = He and
R = Ee.

Thus, in addition to (18), (37), (39) and (43), we have three other Galilei-invariant
systems given by equations (22), (44) and (45). These equations admit additional reductions
by imposing Galilei-invariant constrains to their solutions.

Considering (22), we easily find that another possible invariant condition is formed by
the pair Ee = 0, j 4

e = 0 so that (22) reduces to the following equations:

∇ × Ĥ = ej, ∇ · Ĥ = 0, (46)

where Ĥ denotes He|Ee≡0.
Let us return to system (44). This system can be reduced by imposing the Galilei-invariant

pair of conditions R = 0, j 4 = 0 to the following (decoupled) form:

∇ × Ĥ − ej = 0,

∇ · Ĥ = 0, ∇S = 0,
(47)

11
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where we have changed the notations W → Ĥ and B → S. The corresponding potential
reads A = (A4, 0, A), where A4 should satisfy the condition ∇A4 = 0.

We see that, in contrast to a relativistic theory, there exist a big variety of equations for
massless vector fields invariant w.r.t. the Galilei group. The list of such equations is given by
formulae (18), (22), (37), (39) and (43)–(47).

5. Nonlinear equations for vector fields

Starting with indecomposable representations of the group HG(1, 3) found in [3, 10], it is
possible to find out various classes of partial differential equations invariant w.r.t. the Galilei
group. In the previous sections, we have restricted ourselves to linear Galilean equations for
vector and scalar fields and now we shall present nonlinear equations. More precisely, we shall
study systems of quasilinear first-order equations invariant w.r.t. the representations discussed
in section 2.

5.1. Galilei electromagnetic field in media

Let us consider the Maxwell equations for the electromagnetic field in a medium

∂D

∂t
= ∇ × H, ∇ · D = 0,

∂B

∂t
= −∇ × E, ∇ · B = 0.

(48)

Here E and H are vectors of the electric and magnetic field strengths and D and B denote the
corresponding vectors of the electric and magnetic inductions. System (48) is underdetermined
and has to be completed by constitutive equations which represent the medium properties. The
simplest constitutive equations correspond to the case where B and D are proportional to H

and E, respectively, i.e.,

B = μH and D = κE. (49)

Here μ and κ are constants.
In general, μ and κ can be scalar functions of E and H so that the related theories are

essentially nonlinear. There are even more complex constitutive equations, e.g.,

B = μH + νE, D = κE + λH, (50)

where μ, ν, κ and λ are some functions of H and E. A popular example of the constitutive
equations is the Born–Infeld system [15] which we consider in the following section.

Let us note that system (48) by itself, i.e., without constitutive equations, is invariant w.r.t.
a very extended group which includes both the Poincaré and the Galilei groups as subgroups
[16]. And just constitutive equations, e.g., (49) or (50), reduce this group to the Poincaré
group.

Since we are studying Galilean aspects of the electrodynamics, it is naturally to pose a
problem, weather there exist such constitutive equations which reduce the symmetry of system
(48) to the Galilei group.

For this purpose, we shall search for Galilei-invariant constitutive equations in the form
(50). Such equations are Galilei-invariant provided μ, ν, κ and λ are invariants of Galilei
transformations and, in addition,

σκ = ν, μ = σλ, (51)

where σ is an invariant of the Galilei group.

12
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The Galilei transformations of vectors H, E, D and B, which keep equations (48) invariant,
have the form

E → E + v × B, H → H − v × D, D → D, B → B. (52)

A list of independent bilinear invariants of these transformations reads

E · B, H · D, D2, B2, E · D − H · B. (53)

Note that all the other invariants are their functions.
Thus, we have found the general Galilei-invariant equations for an electromagnetic field

in media in the form (48) with constitutive equations (50), where μ, ν, κ and λ are arbitrary
functions of invariants (53) satisfying conditions (51). In the following section, we shall
present Galilean versions of the Born–Infeld equations.

5.2. Galilean Born–Infeld equations

The relativistic Born–Infeld equations include system (48) and the constitutive equations

D = 1

L
(E + (B · E)B), H = 1

L
(B − (B · E)E), (54)

where L = (1 + B2 − E2 − B · E)1/2. Equations (48) are Lorentz invariant. To figure out
the corresponding representation of the Lorentz group explicitly, we represent vectors of its
carrier space in the following form:

� = column(B, E, D, H). (55)

Then the associated generators of the Lorentz group are written as a direct sum of matrices
(15), i.e., as

Ŝab =
(

Sab 0
0 Sab

)
, S0a =

(
S0a 0
0 S0a

)
. (56)

The Inönü–Wigner contraction can be found by using direct sums of the contracting
matrices (10), i.e., by

V6 =
(

V4 06×6

06×6 V5

)
or V7 =

(
V5 06×6

06×6 V4

)
. (57)

First, let us apply the contraction matrix V6 on � defined in (55). Then the vectors in �

will be transformed in such a way that � → � ′ = column(B′, E′, D′, H′) = εV6�, with

E = E′, B = εB′, D = D′, H = εH′. (58)

Substituting (58) into (48) and (54), taking into account that at the same time ∂
∂x0

→
ε ∂

∂t
,∇ → ∇ and equating terms with the lowest powers of ε, we come to the following

system:

∂D′

∂t
= ∇ × H′, ∇ · D′ = 0,

∇ × E′ = 0, ∇ · B′ = 0,

(59)

with the constitutive equations

D′ = E′
√

1 − E′2 , H′ = B′ − (B′ · E′)E′
√

1 − E′2 . (60)
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Equations (59) and (60) are Galilei invariant. Moreover, under Galilei boosts, vectors
D′, H′, B′ and E′ co-transform as

D′ → D′, H′ → H′ + v × D′,

B′ → B′ + v × E′, E′ → E′.
(61)

Analogously, starting again with (48) but using the contraction matrix V7 instead of V6,
we obtain the following system of the Galilei-invariant equations:

∇ × H′ = 0, ∇ · D′ = 0,

∂B′

∂t
= −∇ × E′, ∇ · B′ = 0,

(62)

which are supplemented with the Galilei-invariant constitutive equations

D′ = E′ + (B′ · E′)B′
√

1 + B′2 , H′ = B′
√

1 + B′2 . (63)

The corresponding transformation laws read

D′ → D′ − v × H′, H′ → H′,

B′ → B′, E′ → E′ − v × B′.
(64)

Thus we have seen that there exist two Galilei limits for the Maxwell equations in various
media which are given by equations (59), (60) and (62), (63). Let us remark that the other
mathematically possible Galilean limits of the Born–Infeld equations (for instance, by direct
sums of two contracting matrices V5 ⊕ V5 or V4 ⊕ V4) yield trivial constitutive equations.

5.3. Quasilinear wave equations and Galilean Chern–Simons models

In this section, we present nonlinear terms (depending on vectors RW, N and scalar B) which
can be added to system (37) without violating its Galilei invariance. We restrict ourselves to
linear and bilinear combinations of these vector and scalar components.

Using Galilean transformation laws (4), one can verify that the following scalars ĵ 0, ĵ 4

and vector j:

ĵ 0 = νW · N + λR · W + σ(B2 − R · N) + ωR2 + μB,

ĵ = ν(BW + R × N) + σ(R × W + BR) + μR,

ĵ 4 = νR · W + σR2

(65)

(where Greek letters denote arbitrary parameters) transform as components of a 5-vector
from the carrier space of the representation D(1, 2, 1) of the HG(1, 3). In other words, their
transformation laws are given by relations (35) where, however, the ‘hats’ are absent.

It follows from the above that Galilei invariance of system (37) will not be violated if we
add the terms ĵ 0, ĵ and ĵ 4 to the first, second and third equations of system (37), respectively.
In addition, it is possible to add terms proportional to N, W, R and B to (4)–(7) equations
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correspondingly. As a result, we obtain the following system:
∂

∂t
B − ∇ · N + νW · N + λR · W + σ(B2 − R · N) + ωR2 + μB = ej 0,

∂R

∂t
+ ∇ × W + ν(BW + R × N) + σ(R × W + BR) + μR = ej,

∇ · R + νR · W + σR2 = ej 4,

∂

∂t
W + ∇ × N + ρN = 0,

∂

∂t
R − ∇B + ρW = 0,

−∇ × R + ρR = 0, and

∇ · W + ρB = 0.

(66)

Formula (66) presents the most general Galilei-invariant quasilinear system which can be
obtained from (37) by adding linear terms and quadratic nonlinearities. Let us consider in
more detail a particular case of system (66) which corresponds to the zero values of arbitrary
parameters ω, σ, λ, μ and ρ:

∂

∂t
B − ∇ · N + νW · N = ej 0,

∂R

∂t
+ ∇ × W + ν(BW + R × N) = ej,

∇ · R + νR · W = ej 4,

∂

∂t
W + ∇ × N = 0,

∂

∂t
R − ∇B = 0,

∇ × R = 0, and

∇ · W = 0.

(67)

Let us note that in the case ν = 0, equations (67) coincide with equations (36) describing
‘extended Galilei electromagnetism’; see section 4.2. Thus the vectors N, W, R and scalar B
can be expressed via derivatives of a 5-vector potential A = (A0, A, A4), see (29).

Starting with (67) and making reductions analogous to ones considered in subsections 4.3
and 4.4, it is easy to find reduced versions of this system. Let us present here the magnetic
and electric limits of equations (67):

∇ · Em + νHm · Em = ej 0, ∇ × Hm = ej,

∂Hm

∂t
− ∇ × Em = 0, ∇ · Hm = 0

(68)

and
∂Ee

∂t
+ ∇ × He + μEe = ej, ∇ × Ee = 0,

∇ · Ee + νEe · He = ej 4, ∇ · He = 0.

(69)

It is necessary to stress that equations (67) admit a Lagrangian formulation. The
corresponding Lagrangian reads

L = 1
2 (B2 − W2) − N · R + ν(A4W · N + A0R · W − A · (WB + R × N))

− e(A4j 0 + A0j 4 − A · j). (70)
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Lagrangian (70) includes products of potential A and field strengths and in this aspect can
be treated as a Galilean version of the Chern–Simons Lagrangian [18]. On the other hand,
system (67) is nothing but a Galilei-invariant analogue of the Carroll–Field–Jackiw (CFJ)
model [19]. This model was formulated with a view to examine the possibility of Lorentz
and CPT violations in Maxwell’s electrodynamics and is invariant neither w.r.t. the Lorentz
nor w.r.t. the Galilei transformations. Equations (67) can be derived via contraction of a
generalized CFJ model which will be shown elsewhere.

Lagrangian (70) is invariant with respect to the Galilei group which includes in particular
shifts of time and spatial variables. Thus in the case j 0 = j 4 = 0 and j = 0, we can find the
related energy–momenta tensor whose components are given in the following equation:

T 0
0 = 1

2 (B2 + WbWb),

T 0
a = εabcNbWc − BNa,

T a
0 = BRa + εabcRbWc,

T a
b = NaRb + NbRa − WaWb + δab

(
1
2 (B2 + WnWn) − RnWn

)
.

(71)

Tensors (71) satisfy the continuity equations

∂

∂t
T ν

0 +
∂

∂xa

T ν
a = 0, ν = 0, 1, 2, 3 (72)

and so generate conserved quantities. Moreover, the energy density E and momentum density
P for a system described by equations (67) with e = 0 are associated with T 0

0 and T 0
a and

so can be written in the following form:

E = 1
2 (B2 + W2), P = N × W − BN. (73)

It is interesting to note that the energy–momenta tensor (71) is valid also for the linear version
of system (67), i.e., when e = ν = 0. In other words, like in (1+2)-dimensional Chern–Simons
model the ‘interaction’ terms with a coupling constant ν do not affect the energy–momenta
tensor. This fact gives one more argument to specify (70) as a Galilean Chern–Simons
Lagrangian.

Starting with Lagrangian (67) and using the Noether theorem, it is possible to specify
conserved currents which correspond to other symmetries, i.e., the rotational and Galilei boosts
ones. We reserve these possibilities for a future publication where the Galilei Chern–Simons
system will be considered in more detail.

6. Discussion

The revision of classical results [1] associated with Galilean electromagnetism done in the
present paper appears to be possible due to our knowledge of indecomposable representations
of the homogeneous Galilei group defined on vector and scalar fields [3]. Thus the present
paper completes the results of Le Bellac and Lévy-Leblond in [1] and presents an extended
class of the Galilei-invariant equations for massless fields. Among them are decoupled systems
of the first-order equations which include the same number of components as the Maxwell
equations as well as equations with other numbers of components. The most extended system
includes ten components, while the most reduced one only three.

It is necessary to stress that the majority of the obtained equations admit clear physical
interpretations. For instance equations (43) and (46) are basic for electro- and magnetostatics,
respectively. Our procedure of deducing the Galilei-invariant equations for vector fields used
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in the present paper makes interpretations of the equations rather straightforward, since any
obtained equation has its relativistic counterpart.

We see that a number of the Galilei wave equations for massless vector fields is rather
huge, and so there are many possibilities of describing an interaction of non-relativistic
charged particles with external gauge fields. Some of these possibilities have been discussed in
[3, 11] (se also [4, 5, 8, 17]). Starting with the found equations and using the list of functional
invariants for the Galilean vector fields presented in [10], it is easy to construct nonlinear
models invariant with respect to the Galilei group, including its supersymmetric extensions.
Some examples of nonlinear models have been discussed in section 5. In particular, Galilean
versions of Born–Infeld and Chern–Simons systems are deduced here.

Let us note that in the case ν = e = 0 the Lagrangian (70) can be reduced to the massless
field part of the Lagrangian discussed in paper [6]. Our contribution is a demonstration how the
related Euler–Lagrange equations (67) can be obtained via contraction of a relativistic system
and a discussion of the related conservation laws. In particular, we show that the nonlinear
interaction terms in (67) do not affect the energy–momenta tensor (71) which is valid for
the linear system (36). Moreover, we have presented a much more general Galilei-invariant
nonlinear system (66) which in principle cannot be obtained within reduction approach used
in [6], i.e., starting with systems invariant w.r.t. the extended Poincaré group P(1, 4) (group
of motions of the flat (1+4)-dimensional Minkowski space) and then reducing them to Galilei-
invariant systems.

The main result presented in this paper is a complete description of all linear first-order
Galilei invariant equations for massless vector and scalar fields. Equations which can be
obtained via contractions of relativistic systems are enumerated in subsections 4.2–4.4. In
fact, we give also the most general description of Galilean first-order systems for vector and
scalar fields, since we find all covariant differential forms for such fields. A complete list of
these forms is given in the appendix.

In addition, we present an extended class of nonlinear Galilean systems which are
discussed in section 5.
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Appendix. Covariant differential forms

To complete our analysis of Galilei-invariant linear wave equations for vector and scalar fields,
we present a full list of first-order differential forms which transform as indecomposable
vectors sets under the Galilei transformations. In this way, we describe general linear Galilean
equations of first order for scalar and vector fields.

Using exact transformation laws given by equations (1) and (4), it is not difficult to find
the corresponding transformations for derivatives of vector fields. The differential operators
∂
∂t

and ∇ transform as components of 4-vector from a carrier space of the representation
D(1, 1, 0) of the HG(1, 3), thus to describe transformation properties of these derivatives it is
sufficient to describe tensor products of this representation with all representations enumerated
in equation (5). It is evident that the derivatives of vector fields can transform as scalars, vectors
or second rank tensors under rotations. Restricting ourselves to those forms which transform
as vectors or scalars, we obtain the following indecomposable sets of them:
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for D(0, 1, 0) : {R 1 = ∇A};
for D(1, 0, 0) : {R 2 = −∇ × R} and {A1 = ∇ · R}

for D(1, 1, 0) :

{
R 2, W 2 = ∂R

∂t
− ∇B

}
⊃ {R 2}, and {A1};

for D(1, 1, 1) :

{
B1 = 1

2

(
∂A

∂t
+ ∇ · U

)
, W 1 = ∇ × U, R 1

}
⊃ ({B1, R 1},

{W 1, R 1}, {R 1}), and

{
A2 = ∂A

∂t
− ∇ · U

}
;

for D(2, 0, 0) :

{
U 1 = ∂R

∂t
+ ∇ × W,A1

}
⊃ {A1},

and {B2 = ∇ · W, R 2} ⊃ {R 2};

for D(1, 2, 1) :

{
N 1 = ∂U

∂t
− ∇C, W 1, R 1, B̃1 = ∂A

∂t

}
⊃

{
W 1, R 1, B̃1 = ∂A

∂t

}
⊃ ({B̃1, R 1}, {W 1, R 1}, {R 1}), and {A2};

for D(2, 1, 0) : {W 2, R 2,B2} ⊃ ({B2, R 2}, {W 2, R 2}, {R 2}), and {A1};

for D(2, 1, 1) :

{
K 1 = ∂R

∂t
+ ∇ × K, R̃ 1 = −∇A,A1

}
⊃ ({R̃ 1}, {A1})

and

{
B̃2 = ∇ · K − ∂A

∂t
, R 2

}
⊃ {R 2};

for D(2, 2, 1) : {K 1 = ∂R

∂t
+ ∇ × K, R̃ 1,A1} ⊃ ({R̃ 1}, {A1})

and {B̃2, W 2, R 2} ⊃ ({B̃2, R 2}, {W 2, R 2}, {R 2});

for D(3, 1, 1) :

{
N 2 = ∂W

∂t
+ ∇ × N, W 2, R 2,B2

}
⊃

{
W 2, R 1,B2 = ∂A

∂t

}
⊃ ({B2, R 2}, {W 2, R 2}, {R 2}),

and

{
C1 = ∂B

∂t
− ∇ · N, U 1,A1

}
⊃ {U 1,A1} ⊃ {A1}. (A.1)

Transformation properties of the forms presented in equations (A.1) are described by relations
(4) where capital letters should be replaced by calligraphic ones. The forms given in brackets
are closed w.r.t. the Galilei transformations.

Equating differential forms given in (A.1) to vectors with the same transformation
properties or to zero, we obtain systems of linear first-order equations for Galilei vector
fields. Thus, starting with representation D(3, 1, 1), equating N 1, W 1, R 1 and B to zero
and C, U ∞,A to components of 5-current j 0, j, j 4, we obtain system (37).

Note that there are also tensorial differential forms, namely,

Yab = ∇aRb + ∇bRa, Lab = ∇aNb + ∇bNa, Z1
ab = ∇aUb + ∇bUa,

Rab = ∇aWb + ∇bWa, Z2
ab = ∇aKb + ∇bKa − Rab, Tab = ∇aKb + ∇bKa

(A.2)

which transform in a covariant manner under the Galilei transformations provided R, U, W, K

and N are transformed in accordance with (4). To present invariant sets, which include (A.2),
we need the forms given in (A.1) and also the following scalar and vector forms:
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G = ∂B

∂t
, D = ∂C

∂t
, G = ∂W

∂t
, F = ∂N

∂t
, P = ∂R

∂t
, T = ∂K

∂T
,

X = ∇ × W, S = ∂K

∂t
− G, M = ∂R

∂t
+ ∇B, J = ∂U

∂t
+ ∇C.

(A.3)

The related sets indecomposable w.r.t. the Galilei transformations are enumerated in the
following formula:

{Yab},
{
Z1

ab, R1
}
, {Rab, Yab, R 2},

{
Z2

ab, R 2
}
,

{M, Yab}, {P, Yab, R 2}, {G, M, Yab},
{
D,Z1

ab, R 1, J, B̃
}
,{

J, B̃1, R 1, Z
1
ab

}
, {G, Rab, Yab, R 2, P, U 1},

{
S, Z2

ab, R 1, U 2 − K 2, B̃1
}
,

{Tab, Rab, X, R 1}, {Tab, Rab, X, R 1}, {Tab, Rab, X, S, R 1, K 2 − P, B̃},
{Yab, Rab, Lab, R 2, P, X}, {Yab, Rab, Lab, R 2, P, X, F, M, G,G}.

(A.4)
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